Geometrical aspects of Ziglin's non-integrability theorem for complex Hamiltonian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Integrability and Infinite Branching of Solutions of 2DOF Hamiltonian Systems in Complex Plane of Time

It has been proved by S.L.Ziglin [1], for a large class of 2-degree-of-freedom (d.o.f) Hamiltonian systems, that transverse intersections of the invariant manifolds of saddle fixed points imply infinite branching of solutions in the complex time plane and the non–existence of a second analytic integral of the motion. Here, we review in detail our recent results, following a similar approach to ...

متن کامل

An Index Theorem for Non Periodic Solutions of Hamiltonian Systems

We consider a Hamiltonian setup (M, ω,H,L,Γ,P), where (M, ω) is a symplectic manifold, L is a distribution of Lagrangian subspaces in M, P a Lagrangian submanifold of M, H is a smooth time dependent Hamiltonian function on M and Γ : [a, b] 7→ M is an integral curve of the Hamiltonian flow ~ H starting at P . We do not require any convexity property of the Hamiltonian function H . Under the assu...

متن کامل

Integrability of Hamiltonian systems and transseries expansions

This paper studies analytic Liouville-non-integrable and C∞-Liouvilleintegrable Hamiltonian systems with two degrees of freedom. We will show that considerably general Hamiltonians than the one studied in [2] have the property. We also show that a certain monodromy property of an ordinary differential equation obtained as a subsystem of a given Hamiltonian and the transseries expansion of a fir...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1988

ISSN: 0022-0396

DOI: 10.1016/0022-0396(88)90065-4